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NOTATIONS 

a Coefficient depending on ratio b/c. 

3 Coefficient depending on ratio b/c, 

9 Angle of twist per unit length, Radians/inch. 

()) Angle of twist, degrees. 

Cfj Maximum principal tensile stress, psi. 

a~ Maximum principal compressive stress, psi. 

a^ Compressive stress at mid-point of width "b", psi. 

Og Tensile stress at both ends of width "b", psi. 

aw Tensile working stress, psi. 

a Tensile yield stress, psi. 

a_ Tensile or compressive stress at distance "y", psi. 

a^ Ultimate tensile stress, psi. 

x. Maximum shearing stress at mid-point of width "b", psi, 

T.. Maximum combined shearing stress, psi. 

Tp Shearing stress at distance "y", psi. 

x^ Torsional working stress, psi. 

Ty Torsional yield stress, psi. 

T7Y Shearing stress at distance "y", psi. 

b Width of rectangular strip, inches. 

c Thickness of rectangular strip, inches. 

£ Free length of rectangular strip, inches. 

y Distance from Z-axis, inches. 
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H 

n     Number of leaf springs per pack. 

E ■ Tensile modulus of elasticity, psi. 

G    Shear modulus of elasticity, psi. 

Total height of laminated spring pack, inches, 

S.F.  Safety factor. 

T    Total torque per laminated spring pack, in-lbs. 

T     Torque due to torsional shear, in-lbs. 

T     Torque due to longitudinal stress, in-lbs. 

Tn    Torque per leaf spring, in-lbs. 

111 



INTRODUCTION 

The Saint Venant's analysis indicates that when a flat strip is twisted 

by applying moments at its ends, a plane transverse section therewithin does 

not remain a plane section after twisting.  Said section becomes a warped 

surface which effectuates an increase in shearing stress in some parts of the 

section and a decrease in other parts when compared to stresses that would 

occur if the section did not warp. The center of the strip's long side will 

experience maximum shearing stress, and the corners will experience zero 

shearing stress.  Also, due to said twisting, the longitudinal edges form a 

helix whose fibers become longer than the center fibers.  Simultaneously, 

said twisting causes the strip to shorten axially. Therefore, the net effect 

is the introduction of tensile stresses in the outer fibers, and compressive 

stresses within the central fibers. These longitudinal secondary stresses 

introduce a secondary torque which supplements the torque associated with 

the torsional shearing stresses.  It should be noted that these stresses 

prevail at a sufficient distance from the strip ends, without consideration 

as to the manner in which the strip's ends are secured. 

When a pack of flat strip springs are twisted while secured within 

rectangular type end restraints, localized stresses develop where said strips 

emerge from the end restraints.  Depending on the particular type of end 

restraint design, stress of considerable magnitude can exist at the juncture 

to cause fatigue failure. Since sections perpendicular to the strip spring's 

torsional axis warp when twisted, the strip ends should be allowed to warp 

freely within the rectangular cavity of the end restraints in order to 



minimize operational stresses. Therefore, strip spring working stresses 

should-be established with due consideration given to the type of end 

restraint design used. 

Due to friction between unlubricated strips of a laminated torsion bar 

spring pack during twisting, hysteresis will prevail between the loading and 

unloading action of the spring pack. To reduce inter-strip friction damping, 

liquid or solid film lubricant may be used. 

THEORETICAL ANALYSIS 

The analytical treatment of solid noncircular members in torsion, as 

presented herein, is based on the following assumptions: 

(1) The strip is straight, of uniform rectangular section, and of homo- 

geneous isotropic material. 

(2) The strip is loaded only by equal and opposite twisting couples 

which are applied at its ends in planes normal to its longitudinal axis. 

(3) The strip is stressed within the elastic limit of the material. 

(4) The condition of loading is such that the end sections of the strip 

are free to warp within the end restraints. 

Torque Due To Torsional Shear 

T1 = abc2TA 

Tj = Bbc3Ge 

Data indicates that a and 6 are approximately equal to 1/3 for b/c =10. 

T1 = ibc
3Ge (1) 

Tl = 1 bc2TA (2) 



Thickness of Rectangular Strip 

Equating Eqs. (1) and (2) and solving for "c". 

c - ^ C ~ G6 
(3) 

Longitudinal Stress Distribution in Rectangular Strip 

^Z 
HO' 2  b2 

y - — y 12 (4) 

When a = 0 z 

When y = 0 

When y = ± b/2 

y = 12 

E92b2 
——— (Max. Compressive Stress) 

E92b2 
Or. =   (Max. Tensile Stress) 'B 12 

aB = -2aA 

Solving Eqs. (6) and (7) for "b2" 

u2    24aA 
D  = - 

b2 = 

Ee^ 

1206 

E62 

(5) 

(6) 

(7) 

(8) 

(9) 

(10) 

Torque Due to Longitudinal Stress 

1  ~ ' 5Q3 T2 = 360 Ecb e (11) 



Total Twisting Torque Per Strip Spring 

Combine Eqs. (1) and (11) 

T « T, + T9 n   1   z 

T = i bc3Ge + -i-r- Ecb5e3 (12) 
n  3       360 

Number of Strip Springs Required Per Pack 

Neglecting inter-spring friction between strip springs of equal width 

and thickness, it has been determined that the developed total torque is 

essentially that of a single strip spring multiplied by the number of strip 

springs in the pack. 

n = =£- (13) ln 

Total Height of Laminated Spring Pack 

H = nc (14) 

Shearing Stress Distribution in Rectangular Strip 

With reference to Fig. 2, the maximum shearing stress "T^" exists at 

point "A", the center of side "b". Assume the shearing stress to vary from 

"A" to "B" approximately as the ordinates of a parabola. Therefore, the 

stresses along AB are represented by the ordinates of the portion HMB of a 

parabola. 

Let AH represent "TA", and MP represent "Tp" 

AH = BK = TA 

PM = Tn 



Equation of Parabola: 

yz = kx1 

When y = b/2; x' = BK 

(b/2)2 = k(BK) 

K "  BK 

When y = HN; x1 = (BK-MP) = NM 

.2 = (b/2)2 x, 
BK 

(b/2)2 

BK 
(BK-MP) 

BK-MP 
BK (b/2)2 

1 
MP ^y1 2 

BK b j 

1 ^P 
r         *• 

2y 
2 

TA b 

"      / 2y P 
•LP= ■lA 

I   - b 
(15) 

Combination of Longitudinal and Shearing Stresses 

With reference to Fig. 3, note that the portion of the parabola AP'B' 

represents the portion of the parabola HMB shown in Fig. 2. 

(a) At point "A", the longitudinal stress "cf." is maximum compressive; 

and the shearing stress is "T.". 



a, = — + 
1  2 

a- = — 
2   2 

+ x.2  (Max. Principal Tensile Stress)    (16) 

+ T.2  (Max. Principal Compressive Stress)   (17) 

lM 1~ + T.   (Max. Combined Shearing Stress) (18) 

(b) At point "P", the longitudinal stress is zero, and the shearing 

stress is MTp". 

a, = Tp  (Max. Principal Tensile Stress) 

O- = -Tp  (Max. Principal Compressive Stress) 

(19) 

(20) 

TM = TP  CMax' Combined Shearing Stress) (21) 

(c) At point "B", the longitudinal stress "a" is maximum tensile. 

and the shearing stress "T " is zero, 
B 

a = a  (Max. Principal Tensile Stress) 

a2 = 0  (Max. Principal Compressive Stress) 

TM = aB//^  (Max. Combined Shearing Stress) 

(22) 

(23) 

(24) 

EXAMPLE PROBLEM AND SOLUTION 

Given: T = 3600 in-lbs. 

4) = 135° 

i  = 11.75" 

6 = ,2005 Rad./in. 

Material: A1S1 1095 Clock Spring Steel 

G = 11.5 x 106 psi 

E = 30 x 106 psi 

au = 256,000 psi 

Find:  c, b, Tn, n, H, c^, a2, and TM 



Tensile Yield Stress 

aY = .85 a^ = .85 x 256,000 = 217,600 psi 

Compressive Yield Stress 

Oy = 392,000 psi 

Torsional Yield Stress 

TY = .6 aY = .6 x 217,600 = 130,560 psi 

Tensile Working Stress (At Pt. B) 

W 217,600 

Maximum Combined Shearing Stress (At Pt. A) 

TY  . 130,560  _. ___  . 
TM " STFT"  1.8  " 72'533 PS1 

From Eq. (8): 

aA= " 

aB 
2 : - 15Y81 = -78,840 psi 

From Eq. (18): 
n 

2                  r         -i 

T 2 = T 2 _ 
TA   TM 

0A 
[  2_ = (72,533)2 - -78,840 

2 

i : = 57,338 psi 

From Eq. (3): 

c = 
G0 

57,338 
11.5 x 106 x .2005 

c = .0249 

Let c = .025" 



From Eq. (10) : 

,2 = 12 gg     12(157.6811 

Let 

From Eq. (12) 

Ee2   30 x 106(,2005)2 

b = 1,2526 

b = 1.250" 

T„ = i bc3Ge + -L- Ecb 5Q3 n  3       360 

T = 1.250(.025)
311.5 x 106 x .2005 + 30 x 10

6 x .025(1.25)5(.2005)3 

n 360 

Tn = 66.2564 in-lbs. 

From Eq. (13): 

Let 

From Eq. (14): 

_T_   3600 
Tn '" 66.2564 

= 54.3343 

n = 54 

H = nc = 54 x .025 

H = 1.350" 

From Eq. (16): 

CJi=T + 

= -78,840 +. 

1 2 

+ T, 

•78,840 + (57,338): 

a, = 30,161 psi (Max. Principal Tensile Stress) 



From Eq. (17): 

aA 

-78,840         / 2 "V 
vy 2 

(7       — '-78,840' 2 
+   (57,338)2 a2 2 

_ 

a = -109,000 psi (Max. Principal Compressive Stress) 

From Eq. (18): 

T = 72,533.psi (Max. Combined Shearing Stress) 

From Eq. (22): 

ai = S 
a,  = 157,681 psi (Max. Principal Tensile Stress) 

From Eq. (23): 

From Eq. (24): 

02 = 0 (Max. Principal Compressive Stress) 

TM ~ 2 

157,681 
TM =   2 

x = 78,840 psi (Max. Combined Shearing Stress) 

_ TY .. 130,560 S.F. = ~ = 
TM   78,840 

1.66 
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LONGITUDINAL    STRESS    IN   LEAF   SPRING   UNDER    TORSION 

FIG.  I 
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SHEARING a LONGITUDINAL  STRESS  IN LEAF SPRINGS UNDER  TORSION 

FIG. 3 
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